UETTDRTS24A Design testing and commissioning procedures for field devices and substations
UETTDRTS24A Design testing and commissioning procedures for field devices and substations

Modification History
Not applicable.

Unit Descriptor

1) Scope:

1.1) Descriptor

This Competency Standard Unit covers the testing and commissioning procedures for new substation and field devices in accordance with design. This will involve analysis of settings, and a thorough understanding of the circuit design, which will involve covering such areas as metering, communication circuits and SCADA. It also includes the procedures needed to enable proof of correct operation of all circuits to design specifications. It also encompasses the need for supplying accurate communication in the format that is acceptable to the Operating or Testing Authority.

Application of the Unit

2) This competency standards unit is intended to apply to any recognised development program that leads to the acquisition of a formal award at AQF level 6 or higher.

Licensing/Regulatory Information

3) The skills and knowledge described in this unit may require a licence/registration to practice in the workplace subject to regulations for undertaking of electrical work. Practice in workplace and during training is also subject to regulations directly related to Occupational Health and
License to practice

3) Safety, electricity/telecommunications/gas/water industry safety and compliance, industrial relations, environmental protection, anti discrimination and training. Commonwealth, State/Territory or Local Government legislation and regulations may exist that limits the age of operating certain equipment.

Pre-Requisites

Prerequisite Unit(s)

4) Competencies

4.1) Granting of competency in this unit shall be made only after competency in the following unit(s) has/have been confirmed.
Where pre-requisite pathways have been identified. All competencies in the Common Unit Group must be have been completed plus all the competencies in one (1) of the identified Pathway Unit Group(s):

<table>
<thead>
<tr>
<th>Common Unit Group</th>
<th>Unit Code</th>
<th>Unit Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UEENSEED104A</td>
<td>Use engineering applications software on personal computers</td>
</tr>
<tr>
<td></td>
<td>UEENEEE101A</td>
<td>Apply Occupational Health and Safety regulations, codes and practices in the workplace</td>
</tr>
<tr>
<td></td>
<td>UEENEEE102A</td>
<td>Fabricate, assemble and dismantle utilities industry components</td>
</tr>
<tr>
<td></td>
<td>UEENEEE104A</td>
<td>Solve problems in d.c. Circuits</td>
</tr>
<tr>
<td></td>
<td>UEENEEE107A</td>
<td>Use drawings, diagrams, schedules, standards, codes and specifications</td>
</tr>
<tr>
<td></td>
<td>UEENEEE124A</td>
<td>Compile and produce an energy sector detailed report</td>
</tr>
<tr>
<td></td>
<td>UEENEEE125A</td>
<td>Provide engineering solutions for problems in complex multiple path circuits problems</td>
</tr>
<tr>
<td>Prerequisite Unit(s)</td>
<td>4)</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>UEEENE126A</td>
<td>Provide solutions to basic engineering computational problems</td>
<td></td>
</tr>
<tr>
<td>UEEENG101A</td>
<td>Solve problems in electromagnetic devices and related circuits</td>
<td></td>
</tr>
<tr>
<td>UEEENG102A</td>
<td>Solve problems in electromagnetic devices and related circuits</td>
<td></td>
</tr>
<tr>
<td>UEEENG149A</td>
<td>Provide engineering solutions to problems in complex polyphase power circuits</td>
<td></td>
</tr>
<tr>
<td>UETTDREL11A</td>
<td>Apply sustainable energy and environmental procedures</td>
<td></td>
</tr>
<tr>
<td>UETTDREL16A</td>
<td>Working safely near live electrical apparatus</td>
<td></td>
</tr>
<tr>
<td>UETTDRIS62A</td>
<td>Implement and monitor the power system organisational OHS policies, procedures and programs</td>
<td></td>
</tr>
<tr>
<td>UETTDRIS63A</td>
<td>Implement and monitor the power system environmental and sustainable energy management policies and procedures</td>
<td></td>
</tr>
</tbody>
</table>

Protection Relays and Meters Pathway Unit Group

<table>
<thead>
<tr>
<th>Unit Group</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UETTDRTS28A</td>
<td>Repair, test and calibrate protection relays and meters</td>
</tr>
</tbody>
</table>

Metering Pathway Unit Group

<table>
<thead>
<tr>
<th>Unit Group</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UETTDRTS25A</td>
<td>Maintain and test and metering schemes</td>
</tr>
<tr>
<td>UETTDRTS26A</td>
<td>Commission power systems metering schemes</td>
</tr>
<tr>
<td>UETTDRTS29A</td>
<td>Develop power systems secondary isolation instructional documents</td>
</tr>
</tbody>
</table>

Primary Plant Pathway Unit Group

<table>
<thead>
<tr>
<th>Unit Group</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UETTDRTS29A</td>
<td>Develop power systems secondary</td>
</tr>
</tbody>
</table>
Prerequisite Unit(s) 4) isolation instructional documents

UETTDRTS32A Conduct evaluation of power systems primary plant

Protection Systems Pathway Unit Group

UETTDRTS21A Maintain interdependent network protection and control systems

UETTDRTS29A Develop power systems secondary isolation instructional documents

UETTDRTS35A Maintain complex network protection and control systems

Literacy and numeracy skills 4.2)

Participants are best equipped to achieve this unit if they have reading, writing and numeracy skills indicated by the following scales. Description of each scale is given in Volume 2, Part 3 “Literacy and Numeracy”

Reading 5 Writing 5 Numeracy 5

Employability Skills Information

Employability Skills 5)

The required outcomes described in this unit of competency contain applicable facets of Employability Skills. The Employability Skills Summary of the qualification in which this unit of competency is packaged will assist in identifying Employability Skill requirements.
Elements and Performance Criteria Pre-Content

6) Elements describe the essential outcomes of a competency standard unit. Performance Criteria describe the required performance needed to demonstrate achievement of the element. Assessment of performance is to be consistent with the Evidence Guide.

Elements and Performance Criteria

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>PERFORMANCE CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plan for the design of testing and commissioning procedures for substation and field devices</td>
</tr>
<tr>
<td>1.1</td>
<td>OHS practices/procedures and environmental and sustainable energy procedures, which may influence the undertaking of design of testing and commissioning procedures for substation and field devices, are reviewed and determined.</td>
</tr>
<tr>
<td>1.2</td>
<td>Purpose for designing of testing and commissioning procedures for substation and field devices is established after data is analysed and expected outcomes of the work are confirmed with the appropriate personnel.</td>
</tr>
<tr>
<td>1.3</td>
<td>Organisational established procedures on policies and specifications for the design of testing and commissioning procedures for substation and field devices are obtained or established with the appropriate personnel.</td>
</tr>
<tr>
<td>1.4</td>
<td>Testing procedures are discussed with the appropriate personnel in order to ascertain the project brief.</td>
</tr>
<tr>
<td>1.5</td>
<td>Testing parameters are established from organisational established procedures on policies and specifications</td>
</tr>
<tr>
<td>1.6</td>
<td>Equipment/tools and personal protective equipment are selected based on specified Performance Criteria and established procedures</td>
</tr>
<tr>
<td>1.7</td>
<td>Work roles and tasks are allocated according to requirements and individuals’ competencies</td>
</tr>
<tr>
<td>1.8</td>
<td>Work is prioritised and sequenced for the most efficient/effective outcome, completed within an</td>
</tr>
<tr>
<td>ELEMENT</td>
<td>PERFORMANCE CRITERIA</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>acceptable timeframe to a quality standard and in accordance with established procedures</td>
</tr>
<tr>
<td>1.9</td>
<td>Liaison and communication issues with other/authorised personnel, authorities, clients and land owners are resolved and activities coordinated to carry out work</td>
</tr>
<tr>
<td>1.10</td>
<td>Risk control measures are identified, prioritised and evaluated against the work schedule</td>
</tr>
<tr>
<td>1.11</td>
<td>Relevant work permits are secured to coordinate the performance of work according to requirements and/or established procedures</td>
</tr>
<tr>
<td>2</td>
<td>Carry out the design of testing and commissioning procedures for substation and field devices</td>
</tr>
<tr>
<td>2.1</td>
<td>Circuit/systems modelling is used to evaluate alternative proposals as per established procedures</td>
</tr>
<tr>
<td>2.2</td>
<td>OHS and sustainable energy principles, functionality and practices to reduce the incidents of accidents and minimise waste are incorporated into the project in accordance with requirements and/or established procedures</td>
</tr>
<tr>
<td>2.3</td>
<td>Design testing and commissioning procedures for substation and field devices decisions are made on the basis of safety and effective outcomes according to requirements and/or established procedures</td>
</tr>
<tr>
<td>2.4</td>
<td>Mathematical and/or engineering models of design testing and commissioning procedures for substation and field devices are used to analyse the effectiveness of the finished project as per requirements and established procedures</td>
</tr>
<tr>
<td>2.5</td>
<td>Technical advice is given regarding potential hazards, safety risks and control measures so that monitoring and preventative action can be undertaken and/or appropriate authorities consulted, where necessary, in accordance with requirements and established procedures</td>
</tr>
<tr>
<td>2.6</td>
<td>Essential knowledge and associated skills are applied to analyse specific data and compare it with compliance specifications to ensure</td>
</tr>
<tr>
<td>ELEMENT</td>
<td>PERFORMANCE CRITERIA</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>completion of the project within an agreed timeframe according to requirements.</td>
</tr>
<tr>
<td>2.7</td>
<td>Testing and commissioning procedures for substation and field devices are developed according to requirements and established procedures.</td>
</tr>
<tr>
<td>2.8</td>
<td>Work teams/groups are arranged/coordinated/evaluated to ensure planned goals are met according to established procedures.</td>
</tr>
<tr>
<td>2.9</td>
<td>Solutions to non-routine problems are identified and actioned, using acquired essential knowledge and associated skills, according to requirements.</td>
</tr>
<tr>
<td>2.10</td>
<td>Quality of work is monitored against personal performance agreement and/or established organisational and professional standards. Strategic plans are developed incorporating organisation initiatives as per established procedures.</td>
</tr>
<tr>
<td>2.11</td>
<td>Strategic plans are developed incorporating organisation initiatives as per established procedures.</td>
</tr>
<tr>
<td>3</td>
<td>Complete the design of testing and commissioning procedures for substation and field devices.</td>
</tr>
<tr>
<td>3.1</td>
<td>Final review of testing and commissioning procedures for substation and field devices are undertaken to ensure they comply with all requirements and include all specifications and documentations needed to complete the project.</td>
</tr>
<tr>
<td>3.2</td>
<td>Appropriate personnel are notified of completion and reports and/or completion documents are finalised/commissioned.</td>
</tr>
<tr>
<td>3.3</td>
<td>Reports and/or completion documents are submitted to relevant personnel/organisations for approval and, where applicable, statutory or regulatory approval.</td>
</tr>
<tr>
<td>3.4</td>
<td>Approved copies of design testing and commissioning procedures for substation and field devices documents are issues and records.</td>
</tr>
<tr>
<td>ELEMENT</td>
<td>PERFORMANCE CRITERIA</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>are updated in accordance with established procedures.</td>
</tr>
</tbody>
</table>
Required Skills and Knowledge

REQUIRED SKILLS AND KNOWLEDGE

8) Essential Knowledge and Associated Skills (EKAS): This describes the essential skills and knowledge and their level, required for this unit.
Evidence shall show that knowledge has been acquired of designing testing and commissioning procedures for substation and field devices.
All knowledge and skills detailed in this unit should be contextualised to current industry practices and technologies.

KS01-TTS24A Testing and commissioning procedures for field devices and substations - design

Evidence shall show an understanding of testing and commissioning procedures for field devices and substations - design to an extent indicated by the following aspects:

T1 Powerline safety practices encompassing:

- Protective apparatus and apparel for linework - responsibilities for the selection, use, maintenance and storage of protective apparatus and apparel and the types of protective apparatus and apparel used for the line worker
- Requirements for the use of ladders - carrying, erecting, collapsing and lowering different types of extension ladder against a standing pole, maintenance checks on different types of ladders, renewal of extension ropes and the safety issues relating to clearances from overhead conductors
- Requirements for climbing and working aloft - methods used to identify a pole is safe to climb, methods used to inspect a line worker’s body belt, application of knots and hitches appropriate to the requirements of a line worker, height safety principles including personal fall protection, prevention and related requirements, and the practical procedure of climbing an overhead structure and fitting a pole chair
- Traffic management - purpose of traffic management and a line worker’s responsibilities in accordance with relevant statutory requirements and electricity supply industry requirements, demonstration of the procedure used to provide an effective traffic management scheme and the use of a two-way radio
- Control of small fires - identification, selection and operation of the appropriate extinguishing mediums for various types of fires, general fire prevention methods and the precautions for personal protection when fighting small fires
- Rescue victims from heights and confined spaces - planning, identifying, the procedures, and establishing responses, developing techniques, involvement of external emergency services and practical demonstration/rehearsals of rescuing a person from heights and from confined spaces and emergency procedures for the rescue of an electric shock victim including CPR
- Requirements for aerial linework - planning, establishing and implementing relevant aviation authority clearances, determining system requirements, aircrew familiarisation with network operations and equipment, requirements for effective communications operations for aerial work.

T2 Principles of Statutory and safety considerations encompassing:

- Commonwealth/State/Territory legislation, standards, codes, supply authority
REQUIRED SKILLS AND KNOWLEDGE

regulations and or enterprise requirements associated with working on High Voltage

- Particular reference to State and Territory regulations regarding - working near energised conductors, electrical access, heights, confined space, testing procedures, licensing rules.

T3 Electrical equipment associated with protection and control schemes encompassing:

- Types and applications of electrical equipment – characteristics, capabilities (schemes: overcurrent, frame leakage, cooling, buchholz, DC supplies, restricted earth, sensitive earth fault, CB fail, reclose, DC frame leakage, CEL Fail, under frequency load shed and earth fault)

T4 Principles of isolation and tagging procedures associated with protection testing encompassing:

- Standards, codes, Commonwealth/State/Territory legislation, supply authority regulations and or enterprise requirements associated with the installation, maintenance, isolation and tagging procedures
- Requirements for the use of, isolation and tagging, manuals, system diagrams/plans and drawings
- Techniques in documenting isolations
- Techniques in appropriate isolation and tagging procedures as per Commonwealth/State/Territory legislation, supply authority regulations and enterprise standards
- Techniques in the installation and maintenance procedures protection devices as per Commonwealth/State/Territory legislation, supply authority regulations and enterprise standards

T5 Maintenance and commissioning procedures associated with discrete protection schemes encompassing:

- Standards, codes, Commonwealth/State/Territory legislation, supply authority regulations and or enterprise requirements associated with the maintenance and commissioning procedures
- Requirements for the use of maintenance and commissioning manuals, system diagrams/plans and drawings
- Techniques in maintenance and commissioning procedures – planning, policy, testing techniques
- Close out requirements

T6 Relay manufacturer specifications encompassing:

- Standards, codes, Commonwealth, State/Territory and local government legislation, supply authority regulations and or enterprise requirements applicable to the use and application of relay manufacturer specifications
- Requirements for the use of relay manufacturer manuals, system diagrams/plans and drawings
REQUIRED SKILLS AND KNOWLEDGE

- Types, function and characteristics of specific relays - differences between specific relays used for the same functionality

T7 Procedure to undertake a visual inspection of a scheme encompassing:

- Standards, codes, Commonwealth/State/Territory legislation, supply authority regulations and or enterprise requirements associated with visual inspection procedures of a scheme
- Requirements for the use of manuals, system diagrams/plans and drawings
- Identify obvious deficiencies in operating to the standard functionality
- Techniques in determining relay malfunction - targeting
- Techniques in determining wiring defects

T8 Operation and maintenance procedures associated with discrete protection and control systems encompassing:

- Standards, codes, Commonwealth/State/Territory legislation, supply authority regulations and or enterprise requirements associated with operating procedures
- Requirements for the use of operating manuals, system diagrams/plans and drawings
- Techniques - gas collection and analysis, bleeding and resetting, calibration, operational and sensitivity checks, trip and alarm checks
- Surge relay types and uses, including transformer main tanks, diverter switch chambers

T9 Measurements and the interpretation and analysis of those measurements related to the plant and/or equipment type encompassing:

- Type of measurements - timing, current, voltage, capacitance, inductance, impedance, phase angle, phase shift, resistance, dielectric dissipation factor, frequency, polarisation index, ratio, vector group, temperature
- Interpretation and analysis the use of techniques - digital comparison of data, extrapolation, use of graphs and charts, statistics and tables, mathematical calculation of expected values and comparison with manufacturers data and measurements
- Techniques in the processes involved in follow-up actions and recommendations resulting from analysis and interpretation of results and measurements.

T10 Substation safety practices encompassing:

- Standards, codes, Commonwealth, State/Territory/local government legislation, supply authority regulations and or enterprise requirements pertaining to substation safety practices
- Techniques in the use of protective apparatus and apparel for substations work, including responsibilities with regard to the use and maintenance of protective apparatus and apparel and the types of protective apparatus and apparel used for work in substations
- Requirements for the use of ladders and appropriate ladder types for work in substations - safe work methods when carrying, erecting, collapsing and lowering
REQUIRED SKILLS AND KNOWLEDGE

- different types of extension ladder against substation structures, plant and equipment, maintenance checks on different types of ladders, renewal of extension ropes and the safety issues relating to clearances from energised conductors

- Requirements for climbing and working at heights in substations - attached climbing principles, selection, use and operation of elevated work platforms and any OHS requirements associated with the use of EWPs

- Control of small fires - identification, selection and operation of the appropriate extinguishing mediums for various types of fires and the precautions for personal protection when fighting small fires

- Control of oil spills - identification, use and maintenance of spill oil control equipment and materials, oil containment facilities and systems

- Rescue and release procedures - the rescue personnel from energised conductors, emergency descent from an EWP and may include rescue from confined spaces.

- Enterprise requirements - safe access and Authorisation to Work procedures, use of mobile extendable equipment on or near energised HV conductors, emergency response procedures.

- Hazards associated with work in substations including earthing systems, transfer potentials, step and touch effects, electrostatic and electromagnetic induction, dangers of near approach to energised conductors

T11 Design principles of high voltage insulation systems encompassing:

- Insulation design principles - common materials used, electrical characteristics, thermal characteristics, uses and applications to substation high voltage plant and equipment, grading, construction, cooling.

- Common contaminants and their effects - internal contaminants, external contaminants

- Testing and measurement of insulation quality - test types and common measuring instruments and techniques, resistance and resistivity, losses, measurement errors, temperature corrections, safe work practices related to testing and measurement

- Safety precautions when testing and measuring high voltage insulation systems - safe working practices and procedures, identification of hazards, assessment and control of OHS risks, types, selection, maintenance and use of personal protective equipment

T12 Principles of power transformer construction and operations encompassing:

- Transformer types - shell, core, auto, double wound, three phase, single phase and combinations of these types, step up and step down transformers, transmission and generation types

- Reactor types - shunt and series, applications and design considerations

- Iron circuit characteristics - steel types, losses and techniques used to eliminate excess eddy currents and other circulating currents

- Winding configurations and construction techniques - helical, spiral, disc, interleaved disc types

- Insulation methods and techniques - fully insulated windings and graded insulation techniques, oil filled and gas filled power transformers
REQUIRED SKILLS AND KNOWLEDGE

- Transformer and reactor ratings, losses and efficiency - equivalent circuits and vector relationships, impedance percent
- Nameplate details - BIL, tapping winding detail, physical layout, cooling ratings, physical details
- Transformer and reactor cooling types and their effects on design and rating
- Transformer and reactor auxiliaries - temperature indicators, over pressure devices and control systems
- Winding configurations - star-star, star-delta, star-zigzag, nomenclature and common methods of diagrammatic representation of winding configuration
- Operating constraints as single units and in parallel
- Tapping windings - placement issues, tapping range, OLTC versus off load TC techniques, types in use (high speed resistor, reactor and vacuum types, Jansen mechanisms, dead tank and live tank types), control system characteristics.
- High voltage bushing selection – type, insulation system used, rating, BIL, selection criteria, testing considerations

T13 Principles of power transformer construction and operations encompassing:

- Applications of static reactive plant in high voltage networks, including voltage control, VAR control, transient response capacity
- Types of static reactive plant including high voltage capacitors, high voltage reactors, static VAR compensators and combinations of these
- Operating characteristics and operational constraints including point on wave switching issues
- Ratings, cooling systems and control systems and ancillary equipment used
- Configurations and system layout including single star, double star, bridge type
- Typical protection systems used including neutral unbalance current, neutral unbalance voltage
- Techniques used when balancing elements within static reactive plant
- Safety precautions when testing and maintaining high voltage static reactive plant - safe working practices and procedures, identification of hazards, assessment and control of OHS risks, types, selection, maintenance and use of personal protective equipment.

T14 Principles of power transformer high speed on load tap changers encompassing:

- Selector types and applications for high voltage power transformers
- Diverter switch types and applications for high voltage power transformers including live tank, dead tank, resistor type, reactor type, vacuum type, pennant flag, pennant cycle
- Ratings and construction principles
- Operating mechanism types, stored energy systems and associated control systems
- Operating principles and operating sequences of selectors and diverters
- Measurement requirements including contacts, differential wear, transition resistors and transient protection devices, rotation lag, out of sequence controls
REQUIRED SKILLS AND KNOWLEDGE

and end-of-life unit and component assessment

- Online diagnostic tools and devices
- Ancillary equipment including online filters, over pressure relays and devices
- Testing requirements including cycle timing, differential delay, energy accumulator mechanical and operational tests and control system functional tests
- Safety precautions when testing and maintaining high voltage power transformer on load tap changers - safe working practices and procedures, identification of hazards, assessment and control of OHS risks, types, selection, maintenance and use of personal protective equipment.

T15 Operation and maintenance procedures associated with voltage regulation schemes encompassing:

- Standards, codes, Commonwealth/State/Territory legislation, supply authority regulations and or enterprise requirements associated with the operating procedures
- Requirements for the use of operating manuals, system diagrams/plans and drawings
- Principles of operation and operating sequences - voltage control, VAR control, Live Bus/Dead Bus synchronising checks, tap changer principles, requirements for parallel operations, settings, grading
- Techniques associated with - isolation requirements, enterprise maintenance requirements, setting checks, LV injections, electrical measurements
- Ancillary equipment which may include transducers, Buswire schemes, tap position indicators, local/remote control systems, alarm systems
- Voltage regulation scheme types which may include electro mechanical, micro-processor or combinations of both.

T16 Types and applications of test equipment encompassing:

- Standards, codes, Commonwealth, State/Territory and local government legislation, supply authority regulations and or enterprise requirements applicable to the use and application of electrical and/or electronic test equipment
- Types and applications of test equipment used on discrete protection scheme
- Techniques in the use of test equipment - electronic test equipment (Doble, Ohmnicrome), gas injection equipment, manufactures test equipment, multimeters, phase angle meters, meggers.

T17 Voltage control techniques encompassing:

- Conditions leading to voltage collapse
- Effects on system of high and low voltage
- Voltage control devices - voltage regulators applied to generators and synchronous phase modifiers, electromagnetic voltage regulators, series and parallel capacitors, OLTC transformers and static VAR compensators (SVC’s). SVC’s includes saturated reactor compensators; thyristor controlled reactor compensators and combined systems
- Production of harmonics and methods of harmonic control
REQUIRED SKILLS AND KNOWLEDGE

- Location of voltage control devices within the system

T18 Transient overvoltages encompassing:
- Causes and effects of transient overvoltages - switching transients and lightning transients, effects on plant items
- Control techniques and systems - surge diverters, shield wires and CB arc control
- Insulation systems - insulation systems, insulation coordination and insulation grading.

T19 Procedure to undertake a visual inspection of a scheme encompassing:
- Standards, codes, Commonwealth/State/Territory legislation, supply authority regulations and or enterprise requirements associated with visual inspection procedures of a scheme
- Requirements for the use of manuals, system diagrams/plans and drawings
- Identify obvious deficiencies in operating to the standard functionality
- Techniques in determining device malfunction
- Techniques in determining wiring defects.

T20 Commissioning procedures associated with relevant equipment encompassing:
- Standards, codes, Commonwealth/State/Territory legislation, supply authority regulations and or enterprise requirements associated with the commissioning procedures
- Requirements for the use of commissioning manuals, system diagrams/plans and drawings
- Techniques in commissioning procedures – planning, policy, testing techniques, close out requirements.

T21 Detailed operation and setting of discrete protection systems encompassing:
- Earth fault protection - master earth leakage schemes, sensitive earth fault relays and schemes, residual earth fault scheme, core balance earth fault scheme, frame/structure earth leakage scheme, time graded discrimination, backup protection
- Overcurrent protection - feeder overcurrent protection, instantaneous overcurrent schemes, inverse timed overcurrent schemes, types and location of components of an overcurrent scheme, CT summation, time graded discrimination, backup protection
- Alarms and controls - auxiliary relays, voltage regulating relays, line drop compensation, gas relay types, gas relay scheme operation and setting, over temperature schemes.

T22 Detailed operation of interdependent protection systems encompassing:
- Overcurrent and earth leakage schemes including intertripping, interlocking and blocking - logic mapping, master control, electromechanical, electronic, shading coils
- Pilot wire, phase comparison - opposed voltage schemes, circulating current
REQUhRED SKILLS AND KNOWLEDGE

- schemes, location of components of a scheme, pilot supervisory techniques,
- Load shedding, voltage control, parallel operation, load rejection
- Busbar Protection and CB failure protection
- Reclose systems - applications, single shot, multishot, blocking schemes, synchronisation checking.

T23 Detailed operation of metering devices and principles encompassing:

- Common circuit configurations
- Meters and measurement principles
- Instrument transformer application
- Testing of metering systems and devices
- Implications of market operation.

T24 Detailed operation of fundamental test equipment encompassing:

- Care and safe use
- Operating principles
- Comparison of different operating principle meters used for the same purpose
- Accuracy and loading effects of meters - measurement of voltage, current, power, resistance, insulation resistance, impedance and phase sequence and the use of oscilloscopes.

T25 Detailed operation of protection test equipment encompassing:

- Care and safe use
- Operating principles
- Comparison of different operating principle meters used for the same purpose
- Accuracy and loading effects of meters - measurement of timing, voltage, current, resistance, inductance, capacitance, impedance, frequency, phase angle, phase difference and the use of primary, secondary and gas injection equipment.

T26 Detailed operation of metering test equipment encompassing:

- Care and safe use
- Operating principles
- Comparison of different operating principle meters used for the same purpose
- Accuracy and loading effects of meters - measurements of, voltage, current, power, reactive power, phase angle, resistance, inductance, capacitance, impedance, frequency, harmonics and the use of transient and data logging devices.

T27 Detailed operation of field device test equipment encompassing:

- Care and safe use
- Operating principles
- Comparison of different operating principle meters used for the same purpose
- Accuracy and loading effects of meters - measurements of voltage, current, power, reactive power, phase angle, resistance, inductance, capacitance, impedance, frequency, harmonics and the use of transient and data logging devices.
REQUIRED SKILLS AND KNOWLEDGE

T28 Procedure for the systematic fault isolation through the application of diagnostic techniques encompassing:

- Principles of analytical questioning
- Techniques in drawing valid conclusions from first observations
- Concepts of broad first-line testing
- Consideration of/responsibility for, avoidance of further damage
- Interpretation of specific test results: cause/effect
- Techniques for isolation to appropriate level - half-split, module/function isolation (kernel technique), substitution, diagnostic software, requirements for the use of manuals, system diagrams/plans, drawings, handbooks, specifications and fault pathways.
- Software/firmware functions awareness
- Factors affecting field versus workshop repair costs
- Scheduling minor/major repair activities, downtime
- Implications of temporary repairs
- Use of system knowledge and history
- Data interpretation, expected versus actual
- Feedback to design/production/installation processes
- Subsystems and system structures
- System signals/status indicators
- Known failure modes and trends
- Action threshold warnings versus catastrophic failure
- Component ratings/upgrades
- Disassembly/reassembly techniques and care
- Relative costs of repair and replacement - remaining life, ongoing maintenance, additional benefits of replacement equipment, e.g. improved productivity, quality.
Evidence Guide

EVIDENCE GUIDE

9) This provides essential advice for assessment of the unit of competency and must be read in conjunction with the Performance Criteria and the Range Statement of the unit of competency and the Training Package Assessment Guidelines. The Evidence Guide forms an integral part of this Competency Standard Unit and shall be used in conjunction with all component parts of this unit and, performed in accordance with the Assessment Guidelines of this Training Package.

Overview of Assessment

9.1) Longitudinal competency development approaches to assessment, such as Profiling, require data to be reliably gathered in a form that can be consistently interpreted over time. This approach is best utilised in Apprenticeship programs and reduces assessment intervention. It is the Industry’s preferred model for apprenticeships. However, where summative (or final) assessment is used it is to include the application of the competency in the normal work environment or, at a minimum, the application of the competency in a realistically simulated work environment. It is recognised that, in some circumstances, assessment in part or full can occur outside the workplace. However, it must be in accord with Industry and, Regulatory policy in this regard.

Methods chosen for a particular assessment will be influenced by various factors. These include the extent of the assessment, the most effective locations for the assessment activities to take place, access to physical resources, additional safety measures that may be required and the critical nature of the competencies being assessed. The critical safety nature of working with electricity, electrical equipment, gas or any other hazardous substance/material carries risk in deeming a person competent. Hence, sources of evidence need to be ‘rich’ in nature so as to minimise error in judgment. Activities associated with normal every day work have a bearing on the decision as to how much and how detailed the data gathered will contribute to its ‘richness’. Some skills are more critical to safety and operational requirements while the same skills may be more or less frequently practiced. These points are raised for the assessors to consider when choosing an assessment method and developing assessment instruments. Sample assessment instruments are included for Assessors in the Assessment Guidelines of this Training Package.
Critical aspects of evidence required to demonstrate competency in this unit

Before the critical aspects of evidence are considered all prerequisites shall be met. Evidence for competence in this unit shall be considered holistically. Each element and associated Performance Criteria shall be demonstrated on at least two occasions in accordance with the “Assessment Guidelines – UET12”. Evidence shall also comprise:

- A representative body of Performance Criteria demonstrated within the timeframes typically expected of the discipline, work function and industrial environment. In particular this shall incorporate evidence that shows a candidate is able to:
 - Implement Occupational Health and Safety workplace procedures and practices including the use of risk control measures as specified in the Performance Criteria and range; and
 - Apply sustainable energy principles and practices as specified in the Performance Criteria and range; and
 - Demonstrate an understanding of the essential knowledge and associated skills as described in this unit to such an extent that the learner’s performance outcome is reported in accordance with the preferred approach; namely a percentile graded result, where required by the regulated environment; and
 - Demonstrate an appropriate level of employability skills; and
 - Conduct work observing the relevant Anti discrimination legislation, regulations, policies and workplace procedures; and
 - Demonstrated performance across a representative range of contexts from the prescribed items below:

| Range of tools/equipment/materials/procedures/workplaces/other variables |
|-----------------------------|-------------------|------------------|
| Group No | The minimum number of items on which skill is to be | Item List |

Date this document was generated: 1 October 2012

© Commonwealth of Australia, 2012 EE-Oz Training Standards
<table>
<thead>
<tr>
<th>demonstrated</th>
</tr>
</thead>
</table>
| A | Bus protection
Transformer protection
Earth fault protection
Backup protection
Metering schemes
Communicate and SCADA schemes
Develop testing and commission procedures for at least three (3) of the following substation equipment: |
| B | Regulator
ACR/gas switch
Line capacitors
Develop testing and commission procedures for any two of the following field devices: |
| C | At least one occasion
Dealing with an unplanned event by drawing on essential knowledge and associated skills to provide appropriate solutions incorporated in the holistic assessment with the above listed items. |

Context of and specific resources for assessment

This unit should be assessed as it relates to normal work practice using procedures, information and resources typical of a workplace. This should include:

- OHS policy and work procedures and instructions.
- Suitable work environment, facilities, equipment and materials to undertake actual design of testing and commissioning procedures for substation and field devices.
- Operational access to relevant plant, protection equipment, scheme drawings and specialised testing equipment.

In addition to the resources listed above, in Context of and specific resources for assessment, evidence should show demonstrated competency working in realistic environment and a variety of conditions.
Method of assessment

9.4) This Competency Standard Unit shall be assessed by methods given in Volume 1, Part 3 “Assessment Guidelines”.
Note: Competent performance with inherent safe working practices is expected in the Transmission, Distribution and Rail Traction Industry. This requires that the specified essential knowledge and associated skills are assessed in a structured environment which is primarily intended for learning/assessment and incorporates all necessary equipment and facilities for learners to develop and demonstrate the essential knowledge and associated skills described in this unit.

Concurrent assessment and relationship with other units

9.5) There are no concurrent assessment recommendations for this unit.
Range Statement

RANGE STATEMENT

10) This relates to the unit of competency as a whole providing the range of contexts and conditions to which the Performance Criteria apply. It allows for different work environments and situations that will affect performance.

This Competency Standard Unit shall be demonstrated in relation to the undertaking the design of testing and commissioning procedures for substation and field devices. Tests may include: DC/AC measurements, error, continuity, noise level, return loss, spectrum analysis, radio on receiver sensibility, surveys - mobile phones/pager, end to end, line levels both in and out, transmitter power, transmitter frequency, transmitter deviation, receiver frequency and sensitivity, level and quality of demodulated output - audio/bit error rate, antenna sweep measurements, power and environmental conditions including emergency power plant.

Diagnostic, testing and restoration may involve: Appropriate documentation relating to the protection device; Voltage, current and resistance measuring instruments; Microprocessor based diagnostic test equipment; Laptop computer and diagnostic software; Loop control test instruments.

Complex testing refers to dielectric dissipation factors tests, partial discharge, applied and induced HV tests, CT and VT accuracy tests (calibration), watts loss, ratio confirmation tests, tests on interconnected equipment, sf6 tests.

Testing and recording equipment could include: Digital bearer test equipment; Voice frequency analysers; RF mounting equipment; RF spectrum equipment; Multimeters; Communication testers; Transmission measuring sets; Directional couplers; Laptop computers. Test and recording equipment may include: Infrascan equipment; Phasing equipment; Recording meters; Trend monitoring equipment; Condition monitoring equipment; Diagnostic testing devices using computer hardware and software; Taplon sticks; Insulation and continuity test instruments; Voltage, resistance and current testers; Ductors; Ratio meters; Earth systems testing devices; Capacitor bridge meters; Doble Test sets devices; High voltage alternating current test sets; Scope meters; Clip on ammeters; Test plans for automatic relay testing SCADA systems used for developing and evaluating voltage regulation systems, circuit breaker reclosing systems, VAR’s monitoring and similar computer controlled diagnostic testing and recording.

Test and recording equipment may include: AC/DC test sets; IR testers; earth resistance meters; cable fault location equipment; circuit breaker timers; recording equipment; devices utilising computer hardware and software; oil dielectric strength equipment; trend monitoring equipment; infrared thermographic equipment; schering bridge; partial discharge test equipment; double insulation test set; primary injection test sets; CT and VT calibration equipment and sf6 leakage testers.

Computerised test equipment work may include, for example: Secondary injection test sets, primary test sets, insulation test sets, timing test sets, Circuit breaker test sets, magnetic test sets.

The following constants and variables included in the element/Performance Criteria in this unit are fully described in the Definitions Section 1 of this volume and form an integral part of the Range Statement of this unit:

- Appropriate and relevant persons (see Personnel)
RANGE STATEMENT

- Appropriate authorities
- Appropriate work platform
- Assessing risk
- Assessment
- Authorisation
- Confined space
- Diagnostic, testing and restoration
- Documenting detail work events, record keeping and or storage of information
- Drawings and specifications
- Emergency
- Environmental and sustainable energy procedures
- Environmental legislation
- Environmental management documentation
- Established procedures
- Fall prevention
- Hazards
- Identifying hazards
- Inspect
- Legislation
- MSDS
- Notification
- OHS practices
- OHS issues
- Permits and/or permits to work
- Personnel
- Quality assurance systems
- Requirements
- Testing procedures
- Work clearance systems

Unit Sector(s)

Not applicable.
Competency Field

Testing Units