UEENEEG108A Trouble-shoot and repair faults in low voltage electrical apparatus and circuits
UEENEEG108A Trouble-shoot and repair faults in low voltage electrical apparatus and circuits

Modification History
Not Applicable

Unit Descriptor

1) 1.1) Descriptor

This unit covers trouble-shooting and repairing faults in electrical apparatus and interconnecting circuits and equipment operating at voltages up to 1,000 V a.c. or 1,500 V d.c. It encompasses working safely, reading circuit diagrams, sketching diagrams from traced wiring, logically applying fault finding procedures, conducting repairs and completing the necessary service documentation.

Application of the Unit
Not Applicable
Licensing/Regulatory Information

1.2) License to practice

During Training: Competency development activities are subject to regulations directly related to licensing, occupational health and safety and where applicable contracts of training such as apprenticeships.

In the workplace: The application of the skills and knowledge described in this unit require a license to practice in the workplace where work is carried out on electrical equipment or installations which are designed to operate at voltages greater than 50 V a.c. or 120 V d.c.

Other conditions may apply under State and Territory legislative and regulatory requirements.

Pre-Requisites

Prerequisite Unit(s)  2)

2.1) Competencies

Granting competency in this unit shall be made only after competency in the following unit(s) has/have been confirmed.
UEENEEE101A Apply Occupational Health and Safety regulations, codes and practices in the workplace
UEENEEE102A Fabricate, dismantle, assemble of electrotechnology components
UEENEEE104A Solve problems in d.c circuits
UEENEEE105A Fix and secure electrotechnology equipment
UEENEEE107A Use drawings, diagrams, schedules, standards, codes and specifications
UEENEEG006A Solve problems in single and three phase low voltage machines
UEENEEG033A Solve problems in single and three phase electrical apparatus and circuits
UEENEEG063A Arrange circuits, control and protection for general electrical installations
UEENEEG101A Solve problems in electromagnetic devices and related circuits
UEENEEG102A Solve problems in low voltage a.c. circuit
UEENEEG106A Terminate cables, cords and accessories for low voltage circuits

2.2) Further Information

For the full prerequisite chain details for this unit please
Prerequisite Unit(s) 2) refer to Table 2 in Volume 1, Part 2

Employability Skills Information

Employability Skills 3) This unit contains Employability Skills. The required outcomes described in this unit of competency contain applicable facets of Employability Skills. The Employability Skills Summary of the qualification in which this unit of competency is packaged will assist in identifying Employability Skill requirements.

Application of the Unit 4)

4.1) General Application
This unit applies to all qualifications, competencies and/or Skill Sets which require an electrical license.

4.2) Importation
RTOs wishing to import this unit into any qualification under the flexibility provisions of NQC Training Package Policy

Elements and Performance Criteria Pre-Content

6) Elements describe the essential outcomes of a unit of competency. Performance criteria describe the required performance needed to demonstrate achievement of the Element. Assessment of performance is to be consistent with the evidence guide.

Elements and Performance Criteria

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>PERFORMANCE CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Prepare to trouble-shoot and rectify faults.</td>
<td>1.1 The extent and nature of the electrical installation is determined from job specifications.</td>
</tr>
<tr>
<td></td>
<td>1.2 Safety and other regulatory requirements to which the electrical installation shall comply area are identified, obtained and understood.</td>
</tr>
<tr>
<td>ELEMENT</td>
<td>PERFORMANCE CRITERIA</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>1.3</td>
<td>OHS procedures for a given work area are identified, obtained and understood.</td>
</tr>
<tr>
<td>1.4</td>
<td>OHS risk control measures and procedures in preparation for the work are followed.</td>
</tr>
<tr>
<td>1.5</td>
<td>The likely extent of work to be undertaken is envisaged from fault/breakdown reports and/or discussions with appropriate person(s).</td>
</tr>
<tr>
<td>1.6</td>
<td>Advice is sought from the work supervisor to ensure the work is coordinated effectively with others.</td>
</tr>
<tr>
<td>2</td>
<td>Trouble-shoot and repair faults.</td>
</tr>
<tr>
<td>2.1</td>
<td>OHS risk control measures and procedures for carrying out the work are followed.</td>
</tr>
<tr>
<td>2.2</td>
<td>The need to test or measure live is determined in strict accordance with OHS requirements and when necessary conducted within established safety procedures.</td>
</tr>
<tr>
<td>2.3</td>
<td>Circuits/machines/plant are checked as being isolated where necessary in strict accordance OHS requirements and procedures.</td>
</tr>
<tr>
<td>2.4</td>
<td>Safety hazards resulting from the fault or breakdown are documented and risk control measures devised and implemented in consultation with appropriate personnel.</td>
</tr>
<tr>
<td>2.5</td>
<td>Trouble-shooting is approached methodically drawing on knowledge of electrical circuits and apparatus using measured and calculated values of circuit/apparatus parameters.</td>
</tr>
<tr>
<td>2.6</td>
<td>Circuit/apparatus components are dismantled where necessary and parts stored to protect them against loss or damage.</td>
</tr>
<tr>
<td>2.7</td>
<td>Faulty circuits/components are rechecked and their fault status and acquired.</td>
</tr>
<tr>
<td>2.8</td>
<td>Materials/replacement parts required to rectify faults are sourced and obtained in accordance with established procedures.</td>
</tr>
<tr>
<td>ELEMENT</td>
<td>PERFORMANCE CRITERIA</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>2.9</td>
<td>Effectiveness of the repair is tested in accordance with established procedures.</td>
</tr>
<tr>
<td>2.10</td>
<td>Apparatus is reassembled, finally tested and prepared for return to service.</td>
</tr>
<tr>
<td>2.11</td>
<td>Unexpected situations are dealt with safely and with the approval of an authorised person.</td>
</tr>
<tr>
<td>2.12</td>
<td>Trouble-shooting and repair activities are carried out without damage to apparatus, circuits, the surrounding environment or services and using sustainable energy practices.</td>
</tr>
<tr>
<td>3</td>
<td>Completion and report trouble-shoot and repair activities.</td>
</tr>
<tr>
<td>3.1</td>
<td>OHS work completion risk control measures and procedures are followed.</td>
</tr>
<tr>
<td>3.2</td>
<td>Work area is cleaned and made safe in accordance with established procedures.</td>
</tr>
<tr>
<td>3.3</td>
<td>Written justification is made for repairs to apparatus.</td>
</tr>
<tr>
<td>3.4</td>
<td>Work completion is documented and an appropriate person or persons notified in accordance with established procedures.</td>
</tr>
</tbody>
</table>
Required Skills and Knowledge

REQUIRED SKILLS AND KNOWLEDGE

7) This describes the essential skills and knowledge and their level, required for this unit.

Evidence shall show that knowledge has been acquired of safe working practices and trouble-shooting and repairing faults in electrical apparatus and circuits. All knowledge and skills detailed in this unit should be contextualised to current industry practices and technologies.

KS01-EG108A Electrical circuit and equipment faults and fault finding techniques

Evidence shall show an understanding of electrical circuit and equipment faults and fault finding techniques to an extent indicated by the following aspects:

T1 Troubleshooting concepts encompassing:

- need to understand the correct operation of a circuit or equipment, switching and control circuit arrangements.
- common faults with circuits and equipment including operator faults, incorrect connections, open-circuits, short-circuits, device faults (mechanical), supply faults.
- typical faults symptoms and their causes: operation of circuit protective device, appliance does not operate, single phase motor does not develop enough torque to drive the load, three phase motor does not develop enough torque to drive the load, motor overload trips
- factors to consider in clarifying the nature of a fault: initial fault report, confirmation of symptoms of the fault, comparison of symptoms with normal operation
- effect to cause reasoning — assumptions of possible causes
- methods for testing assumptions: visual inspection, component isolation, test equipment, sectional testing, split-half tests
- repairing the fault and the steps needed to ensure fault doesn’t re-occur
- dealing with intermittent faults (typical causes of intermittent faults are vibration, shock, changes in temperature and electromagnetic interference).
- final testing and re commissioning

T2 Troubleshooting water heater and appliance circuits/equipment encompassing:

- circuit diagrams of common single phase and three phase hot water systems
- single phase and three phase element resistance values (determined from measurement and calculation from power and voltage ratings)
- testing single and three phase elements for correct insulation resistance and continuity
- element replacement techniques
- operation of thermostats, thermal cut-outs and pressure relief valves, flow switches and checking sacrificial anodes
- locating faults in common single and three phase hot water systems
- repairing faulty water heating systems
REQUIRED SKILLS AND KNOWLEDGE

T3 Troubleshooting electrical appliance circuits/equipment encompassing:
- circuit diagrams of common single phase and three phase appliances
- methods to determine the cause of an RCD operation
- identification of appliances that is causing an RCD to trip
- testing single and three phase appliances for correct insulation resistance and continuity
- operation of appliances controls
- locating faults in common single and three phase appliances
- repairing faulty appliances

T4 Troubleshooting lighting circuits encompassing:
- circuit and wiring diagrams of common lighting circuits including single light controlled by a single switch, multiple lights controlled by a single switch, two and three way switching using the loop at the light method and the loop at the switch method.
- causes of wiring faults from supplied symptoms and circuit and/or wiring diagrams
- causes of faults in ELV lighting devices, include transformer (iron core or electronic), voltage drop, heat, over-voltage, poor connections, incompatible dimmers
- diagrams of a basic fluorescent light circuit including lamp, ballast and starter
- locating faults in fluorescent light circuits
- operation of a range of lighting control including passive infra-red (PIR), dimmers, photo electric or day-light switches and time clocks
- locating faults in lighting control circuits

T5 Troubleshooting single phase motor and control circuits encompassing:
- circuit diagrams of split phase, capacitor start, capacitor start capacitor run, universal and shaded pole single phase motors
- causes of single phase motor faults from supplied symptoms and circuit diagrams
- causes of electrical faults in single phase motors, include open and partially open circuit winding, short and partially short circuit winding, open circuit rotor, burnt out winding, coil shorted to frame.
- reasons for a thermal overload trip and how often they are to be reset before investigating a cause
- internal mechanical faults and their consequences, include bearings, fans, bent shaft, locked rotor, blocked air vents, centrifugal switches, environmental factors
- faults on driven loads and couplings and their consequences, include slipping belts, poorly aligned coupling (shims), vibration, loads bearing failing, load stalling.
- locating faults in single phase motors and their controls

T6 Troubleshooting three phase induction motor encompassing:
- circuit diagrams of three phase induction motors
- causes of three phase motor faults from supplied symptoms and circuit diagrams
- causes of electrical faults in three phase motors, include open and partially open circuit phase winding, short and partially short circuit phase winding, open circuit rotor, burnt out phase winding, coil shorted to frame.
REQUIRED SKILLS AND KNOWLEDGE

- reasons for a thermal overload trip and how often they are to be reset before investigating a cause
- internal mechanical faults and their consequences, include bearings, fans, bent shaft, locked rotor, blocked air vents, environmental factors.
- faults on driven loads and couplings and their consequences, include slipping belts, poorly aligned coupling (shims), vibration, loads bearing failing, load stalling.
- locating faults in three phase induction motors and their controls

T7  Troubleshooting electrical installations encompassing:

- circuit diagrams, wiring diagrams, cable schedules and specifications of electrical installations
- causes of electrical installation faults from supplied symptoms and circuit diagrams include open and partially open circuit wiring, short and partially short circuit wiring, low insulation resistance, incorrect polarity, transposition of conductors, RCD tripping.
- locating faults in electrical installations
- repairing faulty electrical installation circuits components and wiring.

Evidence Guide

EVIDENCE GUIDE

9) The evidence guide provides advice on assessment and must be read in conjunction with the Performance Criteria, Required Skills and Knowledge, the Range Statement and the Assessment Guidelines for this Training Package.

The Evidence Guide forms an integral part of this unit. It must be used in conjunction with all parts of this unit and performed in accordance with the Assessment Guidelines of this Training Package.

Overview of Assessment 9.1)

Longitudinal competency development approaches to assessment, such as Profiling, require data to be reliably gathered in a form that can be consistently interpreted over time. This approach is best utilised in Apprenticeship programs and reduces assessment intervention. It is the Industry’s preferred model for apprenticeships. However, where summative (or final) assessment is used it is to include the application of the competency in the normal work environment or, at a minimum, the application of the competency in a realistically simulated work environment. It is recognised that, in some circumstances, assessment in part or full can occur outside the workplace. However, it must be in accordance with industry and regulatory policy.

Methods chosen for a particular assessment will be influenced by various factors. These include the extent of the assessment, the most
EVIDENCE GUIDE

effective locations for the assessment activities to take place, access
to physical resources, additional safety measures that may be required
and the critical nature of the competencies being assessed.
The critical safety nature of working with electricity, electrical
equipment, gas or any other hazardous substance/material carries risk
in deeming a person competent. Sources of evidence need to be 'rich'
in nature to minimise error in judgment.
Activities associated with normal every day work have a bearing on
the decision as to how much and how detailed the data gathered will
contribute to its 'richness'. Some skills are more critical to safety and
operational requirements while the same skills may be more or less
frequently practised. These points are raised for the assessors to
consider when choosing an assessment method and developing
assessment instruments. Sample assessment instruments are included
for Assessors in the Assessment Guidelines of this Training Package.

Critical aspects of evidence required to demonstrate competency in this unit

9.2) 
Before the critical aspects of evidence are considered all prerequisites
shall be met.

Evidence for competence in this unit shall be considered holistically.
Each element and associated performance criteria shall be
demonstrated on at least two occasions in accordance with the
'Assessment Guidelines - UEE07'. Evidence shall also comprise:

- A representative body of work performance demonstrated within
  the timeframes typically expected of the discipline, work function
  and industrial environment. In particular this shall incorporate
evidence that shows a candidate is able to:
EVIDENCE GUIDE

- Implement Occupational Health and Safety workplace procedures and practices including the use of risk control measures as specified in the performance criteria and range statement
- Apply sustainable energy principles and practices as specified in the performance criteria and range statement
- Demonstrate an understanding of the essential knowledge and associated skills as described in this unit. It may be required by some jurisdictions that RTOs provide a percentile graded result for the purpose of regulatory or licensing requirements.
- Demonstrate an appropriate level of skills enabling employment
- Conduct work observing the relevant Anti Discrimination legislation, regulations, policies and workplace procedures
- Demonstrated consistent performance across a representative range of contexts from the prescribed items below:
  - Find and repair faults in electrical apparatus and circuits as described as described in 8) and including:
    - A Envisaging the likely extent of the fault and the work from fault/breakdown reports and/or discussion to elicit information on the fault/breakdown with appropriate person(s).
    - B Using appropriate tools and resources, and methodical fault finding techniques.
    - C Locating and trouble-shooting faults efficiently.
    - D Conducting tests or measurements in strict accordance with OHS and electrical safe working requirements.
    - E Rectifying faults effectively.
    - F Reporting cause of the fault and justifying the repairs undertaken.
    - G Dealing with unplanned events
EVIDENCE GUIDE

Context of and specific resources for assessment 9.3)
This unit should be assessed as it relates to normal work practice using procedures, information and resources typical of a workplace. This should include:

- OHS policy and work procedures and instructions.
- Suitable work environment, facilities, equipment and materials to undertake actual work as prescribed by this unit.

These should be part of the formal learning/assessment environment.

Note: Where simulation is considered a suitable strategy for assessment, conditions must be authentic and as far as possible reproduce and replicate the workplace and be consistent with the approved industry simulation policy.

The resources used for assessment should reflect current industry practices in relation to trouble-shooting and repairing faults in electrical apparatus and circuits.

Method of assessment 9.4)
This unit shall be assessed by methods given in Volume 1, Part 3 'Assessment Guidelines'.

Note:
Competent performance with inherent safe working practices is expected in the industry to which this unit applies. This requires assessment in a structured environment which is primarily intended for learning/assessment and incorporates all necessary equipment and facilities for learners to develop and demonstrate the essential knowledge and skills described in this unit.

Concurrent assessment and relationship with other units 9.5)
For optimisation of training and assessment effort, competency development in this unit may be arranged concurrently with unit:

UEENEEG109A Develop and connect electrical control circuits
Range Statement

8) This relates to the unit as a whole providing the range of contexts and conditions to which the performance criteria apply. It allows for different work environments and situations that will affect performance.

This unit shall be demonstrated in trouble-shooting and repairing faults in electrical apparatus and circuits designed for voltages up to 1000 V a.c. or 1500 V d.c in at least:

Four of the following equipment and associated circuit
- Switchboards
- Protective devices
- Lighting
- Heating
- Socket outlets
- Control devices

and

Three of the following machines and associated control circuits
- Single phase motors
- Single phase motor controls
- Three phase motors
- Three phase motor controls
- Synchronous machines
- DC machines
- DC machines controls
- Transformers and auxiliary components
RANGE STATEMENT

Notes.
1. The different types of faults include; Open-circuit; Short-circuit; Incorrect connections; Insulation failure; Unsafe condition; Apparatus/component failure; Related mechanical failure; Other electrical apparatus and circuit faults
2. Examples of apparatus are Control devices; Fixed appliances/accessories; Lighting; Single phase motors and their controls; Socket outlets Three phase motors and their controls, synchronous machines and their controls, transformers and their controls, switchboards and/or distribution boards and their controls, protection and/or metering devices, a.c./d.c. machines and their controls other like equipment/accessories.
3. Examples of circuits include those supplying fixed appliances; lighting; single-phase motors; socket outlets; three phase motors and controls circuits; machines and transformers; electronic or computer based equipment other like equipment/accessories.

Generic terms used throughout this Vocational Standard shall be regarded as part of the Range Statement in which competency is demonstrated. The definition of these and other terms that apply are given in Volume 2, Part 2.1.

Unit Sector(s)
Not Applicable

Competency Field

2.2) Literacy and numeracy skills
Participants are best equipped to achieve competency in this unit if they have reading, writing and numeracy skills indicated by the following scales. Description of each scale is given in Volume 2, Part 3 'Literacy and Numeracy'

Reading  4      Writing  4      Numeracy  4

Custom Content Section

Competency Field  5)
Electrical