

Assessment Requirements for SISFFIT049 Use exercise science principles in fitness instruction

Release: 1

Assessment Requirements for SISFFIT049 Use exercise science principles in fitness instruction

Modification History

Supersedes and is not equivalent to SISFFIT019 Incorporate exercise science principles into fitness programming.

Performance Evidence

Evidence of the ability to complete tasks outlined in elements and performance criteria of this unit in the context of the job role, and:

- source information from credible sources about the exercise science principles of:
 - adaptation
 - overload
 - specificity
 - individualisation
 - progression and regression
 - reversibility
- evaluate key aspects of the above information relevant to fitness instruction and identify how it can be used to inform the design of personalised exercise programs
- document how exercise science principles are incorporated into the design of four client programs, and record the following details for each client:
 - a profile of the client and how individual characteristics of age, sex, fitness levels and basic physical characteristics have been used to design the program
 - how the program is systematically structured to provide progression towards planned goals and adaptations
 - rationale for the selection of exercises that relate to the principle of specificity
 - how the principle of overload has been used to determine the volume and intensity of exercises and frequency of sessions
 - rationale for the types of recovery that are incorporated into sessions, and how sessions are sequenced to allow recovery from specific types of exercises between sessions.

Knowledge Evidence

Demonstrated knowledge required to complete the tasks outlined in elements and performance criteria of this unit:

- credible sources of evidence-based exercise science information that draw links with fitness instruction activities relevant to personal trainers
- meaning and key physiological aspects of the following exercise science principles, how the principles interrelate, and how they underpin exercise program design and instruction:

adaptation

Approved Page 2 of 4

- overload
- specificity
- individualisation
- progression and regression
- reversibility
- how each of the exercise science principles is applied to achieve improvements in:
 - health related components of fitness:
 - cardiovascular endurance
 - muscle strength
 - muscle endurance
 - flexibility
 - body composition
 - skill related components of fitness:
 - power
 - speed
 - agility
 - coordination
 - balance
 - reaction time
 - proprioception
- meaning of the following terms as they apply to exercise:
 - acute physiological response
 - chronic physiological adaptation
- key aspects of physiological responses to exercise:
 - cardiovascular system including acute responses and chronic adaptations of the cardiovascular system to aerobic, anaerobic and strength training
 - respiratory system including acute responses and chronic adaptations of the respiratory system to aerobic, anaerobic and strength training
 - musculoskeletal system:
 - acute musculoskeletal responses and chronic adaptations to aerobic, anaerobic and strength training
 - · responses of bone, joints and muscle tissue to weight bearing activities
 - neuromuscular system:
 - acute neuromuscular responses and chronic adaptations to aerobic, anaerobic and strength training
 - responses to high intensity, strength, power, speed and hypertrophy training
 - endocrine system:
 - acute responses and chronic adaptations of the endocrine system to anaerobic training
 - acute and chronic hormonal responses to aerobic and strength training

Approved Page 3 of 4

- key aspects of physiological adaptations relevant to participating in long-term and endurance training:
 - energy system and substrate utilisation
 - nervous system improvements
 - improved thermoregulation
 - increased lactate threshold
- key physiological adaptations that occur from both high and low impact training
- role of exercise and fitness in the prevention of common exercise related injuries and day-to-day falls, and types of physiological adaptations that are related to this reduced risk
- meaning of overtraining, common physiological responses, and client signs and symptoms
- key aspects of physiology that relate to short and longer term recovery periods:
 - physiological needs and responses between sets of exercises
 - physiological needs and responses during cool down phase of exercise sessions
 - physiological needs and responses between exercise sessions.

Assessment Conditions

Skills can be demonstrated in:

- the workplace, or
- a simulated workplace set up for the purpose of skills assessment.

Assessment must ensure use of:

- · evidenced-based information about exercise science principles from credible sources
- exercise program plans.

Assessors must:

- satisfy the Standards for Registered Training Organisations requirements for assessors, and
- hold a Certificate IV in Fitness, and have a collective period of at least two years' experience working in fitness instruction, where they have applied the skills and knowledge covered in this unit of competency; the two years' experience can incorporate full and part time experience, or
- be a registered or accredited practising health or exercise professional with a degree and experience relevant to this unit of competency.

Links

Companion Volume implementation guides are found in VETNet - https://vetnet.gov.au/Pages/TrainingDocs.aspx?q=1ca50016-24d2-4161-a044-d3faa200268b

Approved Page 4 of 4