MARL005 Demonstrate basic knowledge of marine control systems and automation
MARL005 Demonstrate basic knowledge of marine control systems and automation

Modification History
Release 1. New unit of competency.

Application
This unit involves the knowledge of marine automation and process control required by engineers to operate control systems on board a commercial vessel.

This unit applies to people working in the maritime industry as a Marine Engineering Watchkeeper on commercial vessels greater than 750 kW or as an Engineer Class 3 Near Coastal.

This unit has links to legislative and certification requirements.

Pre-requisite Unit
Not applicable.

Competency Field
L - Marine Engineering

Unit Sector
Not applicable.

Elements and Performance Criteria
Elements describe the essential outcomes. Performance criteria describe the performance needed to demonstrate achievement of the element.

1 Outline basic actions and functions of automation equipment in marine contexts
 1.1 Basic concept of an automatic control system is explained using a simple block diagram, correct Australian Standard symbols and layout
 1.2 Components and operation of automatic control systems are outlined
1.3 Relative advantages and disadvantages of different mediums used in shipboard automatic control systems are explained

2 Explain action of nozzle flapper mechanism in pneumatic instruments

2.1 Principle of operation of nozzle/flapper as a pneumatic control system component is outlined

2.2 Modifications required to make the simple nozzle/flapper mechanism suitable for use in process control systems are explained

3 Explain operating principles and application of sensing and transmitting elements

3.1 Different methods of measuring level in an unpressurised tank and in a closed pressurised vessel are sketched and outlined

3.2 Applications at sea, advantages and disadvantages and temperature ranges of filled system thermometers are outlined

3.3 Operating principles of resistance temperature detector and thermocouple are outlined

3.4 Different methods for measuring flow on board ships that are suited to remote indication and automatic control are identified

3.5 Different methods for measuring pressure on board a ship that are suited to remote indication and automatic control are identified

4 Explain function of controller element and associated hand/auto changeover station in an analogue control loop

4.1 Difference between ‘off-on’ control action and fully modulating proportional control action is explained

4.2 ‘Offset’ and how it may be removed is explained

4.3 Basic principles of operation of a simple pneumatic controller are outlined

4.4 Action and function of hand/auto change over station in an automatic control loop is explained, using suitable schematic diagrams

5 Explain basic operating principles of electronic circuits and components

5.1 Components are identified and electronic circuit diagrams are interpreted

5.2 Correct methods of testing electronic components are detailed

5.3 Basic operation of operational amplifiers is outlined
6 Explain use of solid state diodes and transistors to control monitoring and alarm systems

6.1 Basic concept of logic and operation of logic gates is outlined

6.2 Operation of input/output devices and their application to sequential control systems are explained

7 Explain ‘fail safe’ philosophy and its implications for design and operation of main types of actuators available for operating final correcting elements

7.1 Purpose and function of a typical valve actuator and positioner are confirmed

7.2 Constructional differences between typical ‘air-to-open’ and ‘air-to-close’ actuators are confirmed

7.3 Why ‘fail safe’ may mean valves could either close, open, or remain where they are, upon failure of their associated automatic (or servo remote) operating system, is clarified

7.4 Pneumatic piston actuator/positioner assembly used to move final correcting elements pneumatically is outlined

7.5 Operating principles of electrical actuators are outlined

7.6 Operation of a hydraulic steering gear actuator is compared and contrasted with valve actuator and positioner assemblies

8 Specify requirements for a pneumatic control system air supply

8.1 Standard specifications for cleanliness, moisture and oil content of a typical control air system are outlined

8.2 Importance of ensuring that standards for cleanliness, moisture and oil content are maintained throughout operation of control air system is explained

8.3 Typical system that is able to supply compressed air that meets required standards for cleanliness, moisture and oil content is outlined

9 Explain mechanisms for control of physical parameters in a ship’s machinery space

9.1 Typical control loops associated with centralised cooling systems that serve the cooling water system are sketched

9.2 Function of typical loops required for control of temperature, pressure and viscosity of fuel supplies to main and auxiliary engines are outlined and sketched

9.3 Typical pressure and temperature control loops associated with main and auxiliary engine lubricating oil services are sketched

9.4 Function of components of typical control loops for the automatic control of boilers are outlined and sketched
9.5 Location and reasons for alarms associated with remote and/or automatic machinery operation to be separate from control function are explained.

9.6 Tests and procedures required to meet unmanned machinery space (UMS) requirements are specified and different types of associated alarm and monitoring systems are evaluated.

9.7 Power output and control of a main propulsion diesel engine (slow speed two-stroke) and an electrical generator prime mover (high or medium speed four-stroke) are compared and contrasted.

10 Explain schematically total bridge control of a commercial vessel

10.1 Engine manufacturer schematic diagram is interpreted and how Total Bridge control may be achieved to manoeuvre and control the engine is explained.

10.2 Safety interlocks in sequence of operation depicted in schematic diagram are identified and why they are required is explained.

10.3 Location of engine control positions, apart from the bridge, is identified from schematic diagram.

10.4 Why bridge control is preferred option for manoeuvring main engine in modern commercial vessels is explained.

Foundation Skills

This section describes those language, literacy, numeracy and employment skills that are essential to performance.

Foundation skills essential to performance are explicit in the performance criteria of this unit of competency.

Range of Conditions

Specifies different work environments and conditions that may affect performance. Essential operating conditions that may be present (depending on the work situation, needs of the candidate, accessibility of the item, and local industry and regional contexts) are included.

Range is restricted to essential operating conditions and any other variables essential to the work.
environment.

Components include one or more of the following:
- actuators
- responders
- sensors

Mediums include one or more of the following:
- compressed air
- electric currents
- electric voltages
- hydraulic fluids

Unit Mapping Information
This is a new unit. This unit is equivalent to MARL5007A Demonstrate basic knowledge of marine control systems and automation.

Links
Companion Volume implementation guides are found in VETNet - https://vetnet.education.gov.au/Pages/TrainingDocs.aspx?q=772efb7b-4cce-47fe-9bbd-ee3b1d1eb4c2