CUVPHI529A Employ colour management in a digital imaging workplace
CUVPHI529A Employ colour management in a digital imaging workplace

Modification History

<table>
<thead>
<tr>
<th>Version</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUVPHI529A</td>
<td>This version first released with CUV11 Visual Arts, Craft and Design Training Package version 1.0</td>
</tr>
</tbody>
</table>

Unit Descriptor

This unit describes the performance outcomes, skills and knowledge required to manage colour in a digital imaging workplace.

Application of the Unit

This unit applies to any digital imaging industry where digital files are captured, acquired, created, manipulated, integrated, enhanced, output, managed and archived to a variety of media in which colour accuracy is integral.

This unit requires the self-directed application of skills and knowledge to research, evaluate, plan, coordinate and manage the accuracy, consistency and integrity of colour in born digital and hybrid (digitised/scanned film or print) workflows.

This work is usually undertaken autonomously, with guidance where required.

Licensing/Regulatory Information

No licensing, legislative, regulatory or certification requirements apply to this unit at the time of endorsement.

Pre-Requisites

Not applicable.

Employability Skills Information

This unit contains employability skills.
Elements and Performance Criteria Pre-Content

<table>
<thead>
<tr>
<th>Element</th>
<th>Performance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements describe the essential outcomes of a unit of competency.</td>
<td>Performance criteria describe the performance needed to demonstrate achievement of the element. Where bold italicised text is used, further information is detailed in the required skills and knowledge section and the range statement. Assessment of performance is to be consistent with the evidence guide.</td>
</tr>
</tbody>
</table>
Elements and Performance Criteria

<table>
<thead>
<tr>
<th>Elements</th>
<th>Performance Criteria</th>
</tr>
</thead>
</table>
| 1. Research history and apply theory of colour in a digital imaging context | 1.1 Identify *colour theories* as they apply to the *digital imaging context* using appropriate *sources of information and standards*
1.2 Evaluate currency and credibility of information gathered and ensure research scope is sufficiently broad
1.3 Examine how colour is created, defined and managed in contemporary *digital imaging devices*
1.4 Investigate the areas of capture, display, output and archive spaces in contemporary digital imaging devices where colour management is critical to the production of a *quality product*
1.5 Maintain accurate and comprehensive details of sources of information and standards |
| 2. Identify appropriate colour management systems and strategies and apply to a workplace | 2.1 Identify and select appropriate *colour management systems and strategies* for specific digital imaging devices
2.2 Evaluate suitability of selected colour management systems and strategies in terms of relevance and cost efficiency
2.3 Adopt and adapt selected colour management systems and strategies to digital workplace |
| 3. Review and update colour management strategies | 3.1 Review performance and assess impact of adapted colour management systems and strategies
3.2 Develop systems to update and respond to future colour management systems and strategies as they arise from emerging technologies and workplace practices |
Required Skills and Knowledge

This section describes the skills and knowledge required for this unit.

Required skills

- research skills to access information on colour theory and management
- literacy skills to interrogate and interpret a broad range of information on colour theory and management
- numeracy skills to understand numeric values and meaning against colour theory and how RGB, CMYK and LAB colour values are quantified
- communication skills to:
 - critique and discuss colour theory and management
 - use industry and community networks as sources of information
- critical thinking skills to identify best practice options and adopt and adapt colour management strategies
- problem-solving skills to:
 - recognise and resolve workplace issues when adopting and adapting colour management systems into digital workplace
 - solve colour issues
- learning skills to seek expert advice when adopting and adapting colour management strategies
- planning and organising skills to:
 - develop strategies to respond to future colour theory and management strategies
 - document research findings clearly and concisely
 - plan integration of colour management strategies into digital workplace practice
- technology skills to coordinate the installation of colour management systems.

Required knowledge

- colour theories and their application to colour management systems
- commonly used research methodologies
- current trends and emerging technologies in colour management systems
- OHS requirements relating to computer usage.
Evidence Guide

The evidence guide provides advice on assessment and must be read in conjunction with the performance criteria, required skills and knowledge, range statement and the Assessment Guidelines for the Training Package.

<table>
<thead>
<tr>
<th>Overview of assessment</th>
<th>Critical aspects for assessment and evidence required to demonstrate competency in this unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Evidence of the ability to:</td>
</tr>
<tr>
<td></td>
<td>• research colour theory and digital colour management systems and strategies</td>
</tr>
<tr>
<td></td>
<td>• evaluate and adapt appropriate digital colour management systems and strategies</td>
</tr>
<tr>
<td></td>
<td>• maintain and review digital colour management systems and strategies.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Context of and specific resources for assessment</th>
<th>Method of assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment must ensure:</td>
<td>A range of assessment methods should be used to assess practical skills and knowledge. The following examples are appropriate for this unit:</td>
</tr>
<tr>
<td>• access to:</td>
<td>• direct questioning combined with review of portfolios of evidence</td>
</tr>
<tr>
<td>• appropriate technology and sources of information to research colour theory and digital colour management systems and strategies</td>
<td>• review of third-party reports from experienced practitioners</td>
</tr>
<tr>
<td>• an environment where a range of digital imaging devices and colour management systems can be applied</td>
<td>• direct observation of candidate’s evaluation, adaptation and management of appropriate colour management practices and strategies</td>
</tr>
<tr>
<td>• appropriate learning and assessment support when required</td>
<td>• case studies to assess candidate’s ability to evaluate workplaces and use digital colour management practices and strategies</td>
</tr>
<tr>
<td>• the use of culturally appropriate processes, and techniques appropriate to the oracy, language and literacy capacity of the candidate and the work being performed.</td>
<td>• problem-solving activities to assess candidate’s critical thinking skills.</td>
</tr>
</tbody>
</table>
Assessment methods should closely reflect workplace demands (e.g. literacy) and the needs of particular groups (e.g. people with disabilities, and people who may have literacy or numeracy difficulties, such as speakers of languages other than English, remote communities and those with interrupted schooling).

| Guidance information for assessment | Holistic assessment with other units relevant to the industry sector, workplace and job role is recommended. |
Range Statement

The range statement relates to the unit of competency as a whole. It allows for different work environments and situations that may affect performance. Bold italicised wording, if used in the performance criteria, is detailed below. Essential operating conditions that may be present with training and assessment (depending on the work situation, needs of the candidate, accessibility of the item, and local industry and regional contexts) may also be included.

<table>
<thead>
<tr>
<th>Colour theories may include:</th>
<th>• colour charts, including:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• colour look-up tables (CLUTs)</td>
</tr>
<tr>
<td></td>
<td>• Indexed Colour</td>
</tr>
<tr>
<td></td>
<td>• Pantone Matching System</td>
</tr>
<tr>
<td></td>
<td>• Web Safe Colour</td>
</tr>
<tr>
<td></td>
<td>• colour/light measurement:</td>
</tr>
<tr>
<td></td>
<td>• Angstrom</td>
</tr>
<tr>
<td></td>
<td>• candela</td>
</tr>
<tr>
<td></td>
<td>• colour frequency</td>
</tr>
<tr>
<td></td>
<td>• colour rendering index (CRI)</td>
</tr>
<tr>
<td></td>
<td>• colour temperature</td>
</tr>
<tr>
<td></td>
<td>• Kelvin</td>
</tr>
<tr>
<td></td>
<td>• Lumens</td>
</tr>
<tr>
<td></td>
<td>• Lux</td>
</tr>
<tr>
<td></td>
<td>• Mired</td>
</tr>
<tr>
<td></td>
<td>• nanometres</td>
</tr>
<tr>
<td></td>
<td>• wavelength</td>
</tr>
<tr>
<td></td>
<td>• colour spaces, including:</td>
</tr>
<tr>
<td></td>
<td>• Adobe RGB (1998)</td>
</tr>
<tr>
<td></td>
<td>• Atkinson</td>
</tr>
<tr>
<td></td>
<td>• Bruce RGB</td>
</tr>
<tr>
<td></td>
<td>• CMYK</td>
</tr>
<tr>
<td></td>
<td>• ColorMatch RGB</td>
</tr>
<tr>
<td></td>
<td>• Epson RGB (2001)</td>
</tr>
<tr>
<td></td>
<td>• Fraser and EktaSpace</td>
</tr>
<tr>
<td></td>
<td>• greyscale</td>
</tr>
<tr>
<td></td>
<td>• HiFi colour spaces (e.g. Hexachrome)</td>
</tr>
<tr>
<td></td>
<td>• LAB</td>
</tr>
<tr>
<td></td>
<td>• ProPhoto RGB</td>
</tr>
<tr>
<td></td>
<td>• sRGB</td>
</tr>
<tr>
<td></td>
<td>• wide gamut RGB</td>
</tr>
<tr>
<td></td>
<td>• xvRGB</td>
</tr>
</tbody>
</table>
• xvYCC
• YCbCr
• colour synthesis (additive and subtractive colour)
• colour systems and models, including:
 • Chamber of Commerce Colour Chart (CCIC)
 • Commission Internationale de l’Eclairage (CIE): Lab, Luv, XYZ
 • Herring’s opponent processes model
 • HSL
 • HSV
 • Munsell colour atlas
 • Natural Colour System (NCS)
 • Ostwald Surface Colour System
 • Practical Colour Coordinate System (PCCS)
 • subjective versus objective
 • Young-Helmholtz’s tri-pigments model
• colour theorists, including:
 • Isaac Newton – Opticks
 • Johann Wolfgang von Goethe – Theory of Colours
 • Michel-Eugène Chevreul – The Law of Simultaneous Colour Contrast
 • Hermann Günther Grassmann – Grassmann’s Law
 • Hermann Ludwig Ferdinand von Helmholtz – Handbook of Physiological Optics
 • Ewald Hering – colour opponency or opponent process theory
 • Ogden Rood – Modern Chromatics
 • Albert Munsell – Munsell Book of Color
 • Wilhelm Ostwald – Color Atlas
 • Wassily Kandinsky, Johannes Itten, Faber Birren, Josef Albers
 • Chenguang Lu – Decoding Model: A Symmetrical Zone Model of Color Vision
• human vision
• nature of light (e.g. electromagnetic spectrum, natural light phenomena).

Digital imaging context may include:

• any digital imaging workplace where colour management is required, including:
 • designer’s studio
 • digital media studio
 • film and television studio
| Sources of information may include: | • discussions with industry practitioners
• electronic and print media, such as news, reviews and articles
• events, such as industry functions, conferences, trade fairs and expositions
• government bodies and associated publications
• industry association digital standards
• internet
• libraries and archives, such as text, film, video, sound and graphic
• national and international journals, such as artist, computing and design journals
• personal observations and experience
• professional development opportunities, such as training programs, seminars, conferences, competitions, awards, exhibitions, symposiums, workshops and master classes
• retail and wholesale suppliers of products and services
• technical publications and reference books. |

| Standards may include: | • ISO 15076-1:2005 Image technology colour management – Architecture, profile format and data structure – Part 1: Based on ICC.1:2004-10 (Profile version 4.2.0.0) Image technology colour management – Architecture, profile format, and data structure
• ISO 12646:2004 Graphic technology – Displays for colour proofing – Characteristics and viewing conditions
• ISO 3664:2000 Viewing conditions – Graphic technology and photography
• IEC 61966-9 Multimedia systems and equipment – Colour measurement and management – Part 9: Digital cameras
• IEC 61966-8 Multimedia systems and equipment – Colour measurement and management – Part 8: Multimedia colour scanners
• IEC 61966-7-1 Multimedia systems and equipment – Colour measurement and management – Part 7-1: Colour printers – Reflective prints – RGB inputs
• IEC 61966-4 Multimedia systems and equipment – Colour measurement and management – Part 4: Equipment using liquid crystal display panels
• IEC 61966-3 Multimedia systems and equipment – Colour measurement and management – Part 3: Equipment using cathode ray tubes |
• IEC 61966-2-1 and IEC 61966-2-1-am1 Multimedia systems and equipment – Colour measurement and management – Part 2-1: Colour management – Default RGB colour space – sRGB
• IEC 61966-2-2 Multimedia systems and equipment – Colour measurement and management – Part 2-2: Colour management – Extended RGB colour space – scRGB
• IEC 61966-2-4 Multimedia systems and equipment – Colour measurement and management – Part 2-4: Colour management – Extended-gamut YCC colour space for video applications – xvYCC
• ISO 22028-1:2004 Photography and graphic technology – Extended colour encodings for digital image storage, manipulation and interchange – Part 1: Architecture and requirements (ISO TC42)
• ISO 12234-4: Photography – Electronic still-picture imaging – Part 4: Exchangeable image file format (Exif 2.2) (ISO TC42)
• IEC 61966-5 Multimedia systems and equipment – Colour measurement and management – Part 5: Equipment using plasma display panels.

Digital imaging devices may include:
• cameras
• computer hardware and software
• output devices:
 • data projectors
 • desktop printers
 • film writers
 • graphic arts printers
 • image setters
 • lab or bureau printers
 • output to screen based display
• scanners
• self-contained capture backs (microscopes and telescopes)
• video.

Quality product may include:
• computer or game software
• digital images
• documents for output via:
 • CMYK printing presses
 • desktop printers
 • film writers
 • LED and CRT printers
 • wide format inkjet printers
• interactive sequences
Colour management systems and strategies may include:

- videos
- websites.

Calibration devices:
- colourimeters
- devices for camera, screen, scan and output calibration
- spectrophotometer

Profiling:
- canned and custom profile
- colour and resolution targets for scanning and/or digital camera capture
- device-dependent and device-independent
- embed, apply, discard and convert profile options
- ICC profiles
- reference cards and printer colour reference swatch books

Workplace environment:
- airborne pollutants
- ambient lighting
- controlled viewing conditions
- temperature and humidity

WYSIWYG (what you see is what you get) and closed loop system:
- colour management policies
- colour picker
- colour space gamut and gamut warnings
- dynamic range
- gamma
- hue and saturation
- rendering intents
- soft proofing
- white and grey balance and black point.

Unit Sector(s)
Visual communication – photo imaging